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CONTROLLABILITY AND STABILIZABILITY OF

REGULAR SINGULAR LINEAR SYSTEVIS WITH CONSTANT COEFFICIENTS

by

C. E. Langenhop

r

Abstract. A concept of controllability for systems

Ak + Bx = Cu(t) in which A may be singular is introduced.
• - !F.

When det(As+B) 0, s E C, this is shown to be equivalent

to the condition that cT(As+B)-lC =- 0 implies c = 0. It

is also shown that when such a system is controllable and C

is a column vector, then there exists a feedback u = g x + gTx

such that A - Cg is non-singular and all solutions of
Ak + Bx T , TA Bx C ug 0x glx) decay exponentially.
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1. Introduction /

We consider systems of the form . / ,

(.) Ax + Bx =Cu (x=dx/dt)

where x and u are IRn- and 'IRm-valued functions, respec-

tively, of t E IR and where the constant matrices A and

B are n x n and C is n x ai and all have real elements.

We shall say the system is singular when A is singular and

regular when

(1.2) A(s) = det(As+B) t 0, s EIR (or ).

Condition (1.2) is the criterion for the pencil of matrices

{As+B} to be regular in the terminology of [2], p.25 .

Our results for regular singular systems (1.1) reduce to well-

known facts for the case when A is non-singular. Regular singular

systems of the form

(1.3) Ax + Bx = f(t)

have been treated elsewhere [1] where a formula for the solutions

of (1.3) is given. We give an alternative development and an

equivalent formula in §2. A more detailed exposition is in [3].

It is known and will become evident in §2 that when a solution

of (1.1) or (1.3) exists for given initial conditions, then the

L . . .. .....



2.

solution is unique. When f in (1.3) or u in (1.1) is con-

tinuous on an interval , then'a solution x on -JY will be

understood to be a function which is differentiable on Y and

which satisfies the equation everywhere on YF. Thus, in treating

the concept of controllability in regard to (1.1), we restrict

the controls u to the class of continuous Rm-valued functions

and require differentiability of the corresponding responses x.

We shall see that when control can be effected, the function u

can, in fact, be chosen in a class

(1.4) = {u:[t 0 ', ) lRm:u(k) is continuous, k=0,l,...,p}

for some . > 0.

Definition 1.1.

System (1.1) is controllable (at time to) if for every

EC €n, there is a u E &0 and a T > 0 such that there is

a solution x of (1.1) satisfying x(t0 ) = and x(t0 +T) =

it is controllable from zero if the same is true with the restric-

tion = 0.

Remark 1.2.

It should be clear that (1.1) is controllable at time to

if and only if it is controllable at time 0. Since A and B

are constant, one need only translate the control which effects
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the transfer from to r. Accordingly, unless otherwise noted, we

take t0 = 0 in (1.4) and Definition 1.1.

Our main result, proved in §3, is the following.

Theorem 1.3.

Let (1.1) be regular. Then (1.1) is controllable if and only

if

(1.5) c E]Rn cT (As+B)-c 0, s EIR, implies c = 0.

Moreover, when (1.1) is controllable, we may take T > 0

arbitrarily, regardless of ,

Remark 1.4.

If the coefficient matrices A,B,C have elements in C, the complex

numbers, then our results are valid also in the corresponding

context; that is, we mayreplace Rn and m in (1.4), Definition

1.1 and (1.5) by Cn and Cm, respectively, with x being

Cn-valued. It will be clear that our proofs remain valid in this

context when appropriate trivial modifications are made. It should

be noted that (As+B)-1  is not generally defined for all s EJR

(or C). However, when (1.2) holds, the elements of (As+B)-1 are

rational functions of s and (1.S) is to be interpreted to mean

that the elements of cT(As+B)I are each the zero function at

points s where they are defined. Note that it is irrelevant
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whether s is interpreted as a variable over IR or over C.

Remark 1.5.

Singularity of A is not an hypothesis in Theorem 1.3.

When A is non-singular it is easy to show by expanding (As+B)-

in powers of s-  for large s that (1.5) is equivalent to the

condition

rank[B 1 ,A1 B1 ,...,A 
1 B1 1 = n, B1  A 1C, A1 = -A-1 B.

This is the well-known condition (Theorem 5, p.81, [5]) for

controllability of the system x = Alx + BIu equivalent to (1.1)

when A -1  exists.

In §4 we prove a stabilizability result for (1.1). It is

convenient to use the following.

Definition 1.6.

System (1.1) is stabilizable if there exist real m x n

matrices GO and G such that with

(1.6) u = G0 x + G1 x

in (1.1) the resulting system
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(1.7) A x = 0, AA-= C 1 , = B CG0 ,

has A non-singular and all solutions tend to zero exponentially

as t + +-, or, equivalently, det(As+9) has degree n and

all its zeros have negative real.parts.

The main result in §4 is Theorem 4.1 which states that if

(1.1) is regular and controllable and m = 1, then (1.1) is

stabilizable. Corollary 4.2 affirms the analogous result for

certain cases with m > 1. We intend to treat the general case

m > 1 at a later time.

2. Decomposition of the system.

Throughout this section we assume A is singular and we

sketch briefly an analysis leading to an explicit formula for

the solutions of (1.1) in this case. Additional details can be

found in [3]. Condition (1.2) implies the existence of a Laurent

expansion for (A+zB)-1  in a deleted neighborhood of zero; that

is,

(2.1) (A+zB)-1 = Z zkQk , z E C, 0 < Izi < 6
k=- p

for some 6 > 0. Here Q_ 0, U > 1 since A is singular and

the n x n matrices Qk have real elements when A and B do.

(Many of the relations which follow appear in [4] but derived

from a different point of view. It should be noted that we used
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+ 1 there in place of p here.)

From (2.1) it readily follows that

QkA = -Qk-lB, AQk = -BQk-l, k ' 0

(2.2)

Q0A +Q_IB = In  , AQ0 + BQ_I In

where In  denotes the n x n identity matrix. One may now

show that

(2.3) AQkB = BQkA, k >

and that

S0kj k < -1, j > 0

QkAQj = QjAQk k+j k > 0, j > 0

I-Qk+j k < -1, j < -1.

From these, (2.2) and (2.3) it follows that

(2.4) QoAQo = Q0  ' Q-BQ-I =Q-

and since Q-I 0, that

(2.5) (QIA)' = 0 , (QA) - l 0.
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If we define

(2.6) P0  QOA, P1  Q-1 B,

then from (2.2) and (2.5) we see that Po and P1  are com-

plementary projections;

(2.7) p i = ', i = 0,i; P0 + Pl =
0 1 n

If we let r = rank P0 ' then r < n since A is assumed to be

singular. For convenience we assume r > 0; the case r = 0 is

included in what follows if one omits various terms which are

vacuous, in effect, in that case. In a similar way the case

r = n (A non-singular) is included in what follows. Accordingly,

we define p - n - r and consider that

(2.8) r > 0, p = n - r > 0.

Now let X be n x r and Y be n x p with the columns

of X and Y forming bases for the ranges (column spaces) of

P0  and P1 , respectively. By (2.7) the n x n matrix

(2.9) T = [X,YJ



8.

is non-singular and we define r x n and p x n matrices U

and V, respectively, by

(2.10) T-I = L '

The following relations then hold:

(2.11) UX = Ir, UY = 0, VX =0, VY I, "XU+YV

Since P0 X = X and P1Y = Y relations (2.11) imply

(2.12) P0 = XU, P1 = YV

(2.13) UP0 = U, UP 1 = 0, VP 0 = 0, VP1 = V.

Below we shall need the r x r matrix B and p x p matrix

a defined by

(2.14) = -UQoBX a - -VQIAY.

Using (2.3) and (2.4), one finds that YaV = -QA and (2.5)

then implies

(2.15) au 0 , a 0.
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We shall also need the n x n matrix

UQ0
(2.16) S L =

VQ 1l

Observe that [AX,BY]S = APoQ 0 + BPlQ_ = In  by (2.12), (2.4)

and (2.2). Hence

(2.17) S -  = [AX,BY].

Lemma 2.1.

Let (1.1) be regular and suppose (2.8) holds. Then (1.1) is

equivalent to

(2.18 0 ) X0  ax0 = r0u

(2.181) X 1 -c 1 = FIU

where

(21) x =T =0 Xx 0 + YXl, x 0 E 1Rr  x 1 E 1RP

(2.19) x =T

and

(2.20) r0 = UQoC ' F1 = VQ- 1 C.

* .. ... . . , Ii III IIIIll I I III . .. . . ....
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Proof:

Let

(2.21) x = = T-x

so that

(2.22) x0 = Ux, xI = Vx.

Using the substitution (2.19), we see that (1.1) is equivalent to

(2.23) (SAT)x + (SBT)x = SCu.

Computing the submatrices comprising SAT we find

UQoAX = Ir, UQoAY = 0, VQ_IAX = 0, VQIAY = -a

by virtue of (2.3), (2.11), (2.12), (2.13) and (2.14). Similar

computations give the submatrices comprising SBT and we have

I r 0 -

(2.24) SAT - , SBT -
0 0 I
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It is now ev ident that (1.1) is cqtiivailent to (2.18i), i 0,1

by vi rtic of 12.21) and (2.20). [J

I~eiuiia 2.2

Let x le a soltit ion of (2.181) on an interval r wit It

u1 colt i niuous on . If we deI i lie

(2.25) wkk  k x1  k 0,1 .....I,

then w k  exists on 9 and

(2.201 W l Ik- I l k

Fa cht Wk , k = 0,I,...,11 is ln iql'Ily determined by 11 and if

is i I t i mes d if ecrent iab Ic on f, t hcn

(2 .2 7 ) W . ft p - -i+ k i k )  . l

.1 k=0

Proo I'

.I~ ~ k •

fly (2.25) k kI exists on J9 and by (2.18 18) we have,

for o < k - 1,

w Vk+ i 1 (,Xl+l, l )
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which, in effect, is (2.26). Since w0  a'x I = 0 by (2.15), we

see that w0  is uniquely determined by u. The same follows in-
ductively for wl , . . . ,w 1by (2.26). With k = 0 in (2.26) we

have w1 = al-lr Iu which is (2.27) for j = 1. An inductive

proof using (2.26) then establishes (2.27) for any j, 1 < j <

when u is j - 1 times differentiable. [j

Remark 2.3.

Taking k = v in (2.2S), we see that the previous lemma

implies that x1 = w is a formula for the solution of (2.181)

when u is continuous. For example, if p = 3 one gets from

(2.26) and the fact that w0 = 0, that

= .. d d 2XlI = w 3  1 FU + it(ar IU+at2F 1U)

with no implication that u and u exist. When u is I 1

times differentiable on 7r, then (2.27) with j = p gives the

easily written formula

(2.28) x l (t) = p- (k)(t), t E I.
k=0

In any case, with u continuous on _7 the solution of (2.180)

with x0 (0) given is
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at o -t - (t-s)
(2.29) x0 (t) e X0 (0) + f e t 0u(s)ds.

Observe that whereas x0 (O) can be chosen arbitrarily and in-

dependently of u, the value of xl(O) is determined by u.

Formulas (2.28) and (2.29) are equivalent to equation (19), p.419,

in [1].

3. Controllability of the system.

Controllability for (1.1) clearly implies that (2.180) and

(2.181) are each controllable. Whereas criteria for controllability

of (2.180) are well-known, this seems not to be the case for (2.181).

In connection with the latter the following is important.

Lemma 3.1. Let x be a solution of (2.181) on an interval _Y

where u is continuous. If cl E 1R satisfies

(3.1) rc 0, k = 0,...,1-1,

then

(3.2) cTx l ( t ) 7 0 on _.
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Proof:

When u is P - 1 times differentiable, this follows

immediately from (2.28). If u is merely continuous, then (3.2)

follows from (3.1) by an induction argument employing (2.26) in-

as much as w0 = 0 and w,, xI.1

Theorem 3.2.

Let (1.1) be regular. In order that it be controllable it

is necessary that

(3.3) rank H0 = r, rank 1t1 = P

where

(3.4) H0  = [r0, o0 ... ,Br-l10 ] ,  = [lcarl',...,ca -l l .

Proof:

It was pointed out above that if (1.1) is controllable, then

both (2.180) and (2.181) are controllable. We must then have

rank 110 = r. The condition rank 1l = p follows from Lemna 3.1. Indeed if

rank H1 < P then there is a c1 EIRr, c1 # 0 such that clH1 = 0.

But then by (3.2) we have cXl(T) = 0 so there can be no control

u E %0  transferring x from x(O) = 0 to x(r) = Yc1  for T > 0

inasmuch as then xl(T) - c1  (cf. (2.19) and (2.21)) for which

T
c 1 X 1 T) # 0.
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Theorem 3.3.

Let (1.1) be regular. Then it is controllable from zero if

and only if (3.3) holds. Moreover, when (3.3) holds, then

T > 0 in Definition 1.1 can be chosen arbitrarily and one can

choose u E '2 (t0 =0) such that.

(3.5) u(O) = u'(0) ... . u ( ) ( 0) = 0

so that

(3.6) x(0) = 0 when x(0) = 0.

Proof:

The proof given for Theorem 3.2 suffices to show that (3.3)

is necessary for (1.1) to be controllable from zero. To prove

that (3.3) is sufficient we restrict ourselves to controls

u E % defined by

(3.7) u(t) = (t-s)pv(s)ds, t > 0

where v E o (t0 =0). For such u we have

(3.8) u (k)(t) = ( Jk  (ts)p'kv(s)ds, k = 0,1,...,9

where (p),= p/(v-k)! so that (3.5) holds.
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For a solution of the equivalent system (2.18i) , i = 0,I,

we then necessarily have Xl(O) Xl (0) = 0 by (2.28). When

x(O) = 0, then xo(O) = Ux(O) = 0 so by (2.29) and (3.7) we

have

(3.9) x0 (t) J K0 (t-s) r 0v(s)ds, t > 0

where

K ~t e (t-a)ad t>0
(3.10) K0 (t) = e &'da , t >0.

0 JO

Observe that then x0(0) = 0. Hence for controls as in (3.7) we

have (3.6).

Substituting (3.8) into (2.28), we may write

It
(3.11) xl(t) = f Kl(t-s)rlv(s)ds, t > 0

where

Va- 1 k k.
(3.12) Kl(t) = ( -)kt a.

k=0

Combining (3.9) and (3.11) and using (2.19), we have

(t(3.13) x(t) = T foK(t-s)rv(s)ds
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with

(3.14) K(t) L () r 0]0 K1 (I

We now define a n x n matrix function W by

(3.15) W(r) - K(T-s)rrTKT(T-s)ds.

It is evident that W(T) is real symmnetric and positive definite or semi-

definite. Moreover, W(T) is singular for T > 0 if and only

if there is some c EIRn , c 0, such that

(3.16) cTK(t)r E 0, 0 < t < T.

If W(T) is non-singular for some T > 0, then for any C E]Rn

we can define v by

(3.17) v(t) rTKT(T-t)W-I(T)T-l .

With this v in (3.7) the resulting control u E , satisfies

(3.5) and, by virtue of (3.13), gives x(T) ; when x(0) = 0

as well as x(0) = 0. The theorem will be proved then when we

show that (3.3) implies that W(T) is non-singular for all T > 0.
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This is included in the following lemma.

Lemma 3.4.

For any T > 0, W(T) defined in (3.15) is non-singular if

and only if (3.3) holds.

Proof:

Let T > 0 be given and let c E]Rn satisfy cTw(T) = 0.

This is equivalent to (3.16) which, in turn, is equivalent to

(3.18) cTK(k)(o)r = 0 , k = 0,1,2,...

inasmuch as K(t) is an entire function. From (3.10) one can

compute that

0o, k = 0,1,...,

K(k)(0) = k
0 () 11 k-p-1, k > + 1.

From (3.12) we get

U !a k  k = 1,.,

K (k) (01, i. = 0 or k > P + 1.

Accordingly, if we take cT = T  c T where c Er, c1 E IR,

then (3.18) is equivalent to
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c T
0

k F
0 =0 , k =0,1,2,...

(3.19)T 
k(3.1) T : 0 , k : 0,1,...,-

These in turn are equivalent to

(3.20) cT 0 = 0 , c1 0

where H0  and H1  are defined in (3.4). If cTw(t) : 0 and

c 0, then (3.20).holds with c. 0 or cI  0 so (3.3) fails.

Conversely, if (3.3) fails, then (3.20) holds for some c0 ,cI not

both zero. The corresponding c / 0 and satisfies cTw(-) = 0.

This proves the lemma and completes the proof of Theorem 3.3.

Lemma 3.5.

Conditions (1.5), (3.3) and

(3.21) c EIRn , cT(-As+B)-lC = 0, s EIR, implies c = 0,

are all equivalent.

Proof:

The equivalence of (1.5) and (3.21) is obvious since -s

may be substituted for s in either. To show that (1.5) and (3.3)
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are equivalent we use (2.24) to note that

(3.22) S(As+B)T = diag(SIr- ,IP-Sa ) .

It follows that

(3.23) cT(As+B)-l c = cT(sIr- l-r 0 + cT(I -sa)-lI 1

where

(3.24) cT= c= c y, c =[CTcl]T

But for large Isj, s EIR, we have

( -S 1  -k-i Bk

k=O

while for any s E IR we have

(I P-sa)1 = ska k

k=O

by virtue of (2.15). From (3.23) we see then that cT(As+B)C-Ic 0,

s EIR, is equivalent to (3.19) and hence to (3.20). By virtue of

(3.24) it is evident then that (1.5) holds if and only if (3.3)

holds. This completes the proof of the lemma.



21.

We are now in a position to prove our main result:

Proof of Theorem 1.3:

As was pointed out earlier we may assume A is singular

and (2.8) holds. Hence if (1.1) is regular and controllable,

(3.3) must hold by Theorem 3.2 and this implies (1.5) by Lemma

3.5. Now suppose (1.5) holds. Then (3.3) holds so by Theorem

3.3 system (1.1) is controllable from zero with any T > 0 and

with u E OZ satisfying (3.5) and the resulting solution x

satisfying (3.6). But (1.1) also implies (3.21) by Lemma 3.5

so, by the same argument just given, the system

(3.25) -Ax + Bx = Cu

is controllable from zero with any r > 0 and analogous u E 'U

and solution x. Hence, if (1.1) holds and EC E]Rn, T > 0 are

given, there is a control u1 E steering the corresponding

solution x 1 of (3.25) from x1 (0) = 0 to x1 (T/2) = and

there is a control u2 E%, steering the corresponding solution

x 2 of (1.1) from x2 (0) = 0 to x2 (T/2) = C. The controls u1

and u2  satisfy (3.5) and by (3.6) we have xl(o) - 0, x 2 (O) = 0.

If we define

( u l (T/2-t), 0 < t < T/2
(3.26) U2t) u2 (t-T/2), t > T/2,
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then u E 'u The function x defined by

( xI(T/2-t) , 0 < t < T/2
(3.27) x(t) = x2 (t-T/2) , t > T/2

is continuous and differentiable for t > 0 (even at t = T/ 2)

and is a solution of (1.1) with u given by (3.26) which satisfies

x(O) = C and x(T) = C. This completes the proof.

4. Stabilizability of the system.

When (1.1) is regular, the solutions of the homogeneous

system

(4.1) Ai + Bx = 0

can be found by setting u(t) = 0 in (2.28) and (2.29). One gets

x0 (t) = e tx 0 (0), xl(t) - 0, and by (2.19), we find the solutions

of (4.1) in the form

(4.2) x(t) = Xet 0  , &0 E IR r

Thus the initial values are restricted to the range of P0 by

(4.3) x(0) = X&0

I'l
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inasmuch as the columns of X are a basis for the range of P0.

By (2.15) we have det(I -st) E 1 so from (3.22) we see

that the eigenvalues of are precisely those X for which

A(X) = 0 (cf. (1.2)). The polynomial A is of degree r and

the solutions (4.2) form an r-dimensional space over IR. If all

eigenvalues X have negative real parts, then the zero solution

of (4.1) is asymptotically stable relative to the allowable

initial values x(O) given in (4.3). However, a bounded input

u in the system (1.1) need not result in a bounded response x.

Indeed, if r < n, v > 2 and u E P, we see from (2.28) that

then x1  and hence x may be unbounded when u(P-l) is un-

bounded.

In regard to (1.1) we ask then; what conditions assure that

the system can be stabilized by a linear feedback control so that

the zero solution of the combined system plus feedback is

asymptotically stable relative to arbitrary initial conditions

in the state space IRn? It should be clear that when r < n, a

feedback u = Gx with G being n x m will not suffice. The

combined system is then Ax + (B-CG)x = 0 and the degree of

det(As+B-CG) will still be less than n since A is singular.

The corresponding solutions and allowable initial conditions will

be constrained to lie in a proper subspace of IRn. To achieve

stabilization when A is singular the feedback must contain a

term involving x. Thus we ask for conditions which assure

stabilizability in the sense of Definition 1.6. Our principal

result in this direction is the following theorem.
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Theorem 4.1.

Suppose the system (1.1) is regular and that C is n x 1

(m = 1). If (1.1) is controllable, then it is stabilizable.

Proof:

As before, we treat (1.1) in the decomposed form (2.18),

i = 0,1, under the assumption (2.8); the extreme cases r = 0

and r = n (A non-singular) are included thereby when vacuous

terms are omitted. By hypothesis (1.1) is controllable, so (1.5)

holds by Theorem 1.3 and hence (3.3) holds by Lemma 3.5. Since

r0  is r x 1 (m = 1), then H0  is r x r and non-singular.

It follows (Theorem 7, p.90, [5]) that there exists a non-singular

r x r matrix F0  such that if

(4.4) YO = Fox 0 ,

then (2.180) is equivalent to

(4.5) Y0 - M(a)yo = eru

where e is the rth column of Ir and M( ) is a companion

r
matrix for the characteristic polynomial of 8; specifically,
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1 (0 (1 .

b I . b I
0 1

I. r I NI"

T a e 1 t I.in ( 3 .1) i ) i t so we inns t hr lvc Ii "

s ince nk II . ,ince a is p \ an Iand sat i .ies .. 1 '.o

we 1. have " . I'lence it - nl IId i s qllIa rt and nllo

s ini [tlI I r I tc i a lht'l a ion-: i '.11 1 1t \ ; 1a I- i Ix I: Sich

t ha I i f

('1.7) ' : Il l

It'n (2. 18) is q i Vat 1li to

+ V.-!

where v is the pI h tco I IttitIt o 1 I and M () compan ion

Iat I i x fo - t hv c!h '. tac Ir i s ic p o i a I of' spec iI i ka I1N

MI(a') is of' the Ia' forl as M(i1) ill (.1.0) except that (he last

row is ZO.-o. Let t ino
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(4.9) 

yj

and combining (4.5) and (4.8), we have the system

(4 .10) 1 y + y)= [ u

10 - M ,(a) 1 0 1 L e]

which is equivalent to (1.1) under the hypotheses of the theorem.

It is convenient now to replace (4.10) by the system equiva-

lent to it obtained by subtracting the last equation of the system

from the rth equation. Since the last row of M(a) is zero, this

is

0 M1 (a0 1 eJ(4.11) [Ir -+ y L= 2u

where D0  is r x P and all its elements are zero except for a

one in the rth row and pth column.

Next let eT = [1,0,...,O] be I x p and replace u in

(4.11) by

(4.12) u = e 1y - v.

The result may be written, after changing signs in the last p
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equations of the system, in the form

[I 0

4 ) 0 M(a) + e e T 0e

We now define two permutation matrices 10 and n1: 7O is

P x p and reverses the order of the columns of a matrix (of p

columns) when used as a postfactor; n 1  is p x p and reverses

the order of the first p - 1 rows and leaves the last row un-

affected when used as a prefactor on a matrix with p rows. Note

that ff = 2 = I. In (4.13) we make the substitution

(4.14) y = [diag(lr,17O)] z

and multiply the result by the matrix diag(I rv l. Since

1 ep = e and Tl(M(a) epe,) = Ip, the resulting equivalent

system takes the form

(4.15) z =.'z + bv

where

(4.16) M M D 07] b =L 1En
0 Tl Tr

1 1
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Note that all elements of D0 Tr0  are zero except for a one

in the rth row and first column.. Also, the element in the ith

row and i + 1th column of 1i 0 , i = 1,...,p-l, is a one and all others

are zeros except for a one in the Pth row and first column.

Hence, from the form of M(a) in (4.6), we see that _W has ones

just above the main diagonal and all zeroes everywhere above these.

It is then clear from the form of b in (4.16) that

(4.17) H = [bab,...cn-lb]

is non-singular. Hence there exists a feedback (Theorem 9, p.97,

[51)

(4.18) v = gTz , g ERn

which when substituted into (4.15) gives the system

(4.19) z = W+bgT)z

with .Q+ bgT stable; that is, g can be chosen so that all

eigenvalues of _V + bgT have negative real parts and all solutions

of (4.19) tend to zero exponentially as t +-.

The substitutions (4.4) and (4.7) can be written as

(4.20) y = [diag(F 0 ,F1 )]T-lx
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and (4.14) can be written

(4.21) z =[diag(Ir,7T0 )]y

since nr2  I . The combined feedback resulting from (4.12) and
0 P,

(4.18) is thus of the form

(4.22) u =e Ty1 _ gz g~x + g~x

for some g0 ,g1 EIR n; specifically,

(4.23) T -T [ U1  e TFV.go n F Ig g -9 1 1i o0F1V

Using (4.20) and (4.21), we can express (4.19) in terms of x.

The resulting equation, when multiplied by the inverses (in reverse

order) of the several matrices used, in effect, as prefactors in

going from (1.1) to (4.19), will produce the form (1.7) with

T TG0 = g0, G1 = gl; that is, (1.7) with

(4.24) A =A- Cg , B = B - Cg .

The term Ax arises from the term z = I n in (4.19) so A must

be non-singular and all solutions x(t) of (1.7) tend to zero
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exponentially as t since all solutions z(t) of (4.19)

do so. This completes the proof of the theorem.

In the above, C was assumed to be n x 1. We can use this

to prove the stabilizability of (1.1) for some cases when C is

n x m with m > 1.

Corollary 4.2.

Suppose the system (1.1) is regular, that rank A = n - 1

and that the zeros of A(s) = det(As+B) are distinct and none is

zero. If (1.1) is controllable, then it is stabilizable.

Proof:

Since rank A = n - 1, A is singular so the polynomial

A(s) has degree r < n. (A(s) 1 0 since (1.1) is regular.) We

may write

(4.25) A(s) = d0sr+.-.+dr , do j 0, dr 0,

the condition d r 0 being a result of the hypotehsis that

A(O) # 0. From (4.25) we find (z E C)

det(A+zB) = z nA(l/z) = zn-r(d rzr+...+d).

The cofactor of at least one element in A + zB is non-zero

at z = 0 since rank A = n - 1. Hence since do # 0
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lim n-r (A+zB)-1
z 0

exists and is non-zero so (A+zB)-1 has a pole of order n r

at z = 0. Th'is p in (2.1) satisfies ji = n - r p. Since

r < n, we have p > 0 and, again for notational convenience

only, we assume r > 0 so that (2.8) holds.

Now let

(4.26) E =[1 a

where 6 and a are defined in (2.14) as in the development in

§2. Consider

(4.27) H = [r,Er,...,En-lrl

where r is as in (3.14). Since ji = p and ap = 0, we find

H = L2I~
where HO = [ro,srO,...,s'lro] and tt0  and I  are as in

(3.4). But the eigenvalues of B are the zeros of A(s) so our

hypotehses imply that a is non-singular. The controllability
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of (1.1) implies (3.3) by virtue of Theorem 1.3 and Lemma 3.5.

It follows then that rank ="

Since p = p and a is p x p and nilpotent of order

V1, the Jordan canonical form for a is M(a) as described

just after (4.8). Any Jordan form for $ is matrix diagonal

with distinct diagonal elements and none zero by virtue of our

hypothesis regarding the zeros of A(s). Hence in any Jordan

form for E no two Jordan blocks have the same eigenvalue. It

follows then from Theorem 6, p. 86 of [5] that there exists a

c EIR m such that

H = [r,Er,...,E n ], r = rc

has rank n. This in turn implies

(4.28) rank H0 = r, rank H1  P

where H 0  and H1 are as in (3.4) with r0  and r1  replaced

by r0c and r1C, respectively.

Again using Lemma 3.5 and Theorem 1.3, we may now conclude

that

(4.29) Ak + Bx = Cu , C = Cc, u E IR1

is controllable. Since now C is n x 1, Theorem 4.1 implies



33.

that (4.29) is stabilizable. But (4.29) is (1.1) with u-- ci
ST T

and the stabilizing feedback u g x + gjx for (4.29) determines

a stabilizing feedback (1.6) for (1.1) with G0 = cgT , G cg T .

It may be noted that the hypotheses in Corollary 4.2 do not

imply r = n - 1. The following is a case in which r < n - 1.

A 0 1 0 B 0 0 1

e r A 10 0

Here rank A =2 =n -1 but A(s) =s + 1 has degree 1 < n -!
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